Calculating CRIs 18 & 19 in Austria: Reduced emissions of methane and nitrous dioxide & reduced ammonia emissions

© Maria Deweis

Michael Anderl, Umweltbundesamt (Austria) Georg Dersch, AGES (Austria) © Richard Schambure

RDP Measures



Limitation of yield increasing inputs ¹

11.2.1

Renouncement of fungicides and growth regulators in cereals¹

10.1.9

Surface-near spreading of liquid farm manure²

¹secondary contribution to 5D; ²primary contribution to 5D

R 18

RDP Measures

Surface-near spreading of liquid farm manure²

Animal welfare – grazing of livestock ¹

Animal welfare – stable¹

Solid covering of slurry tanks¹

¹secondary contribution to 5D; ²primary contribution to 5D

R 19

Reduced N₂O emissions

For Measures (VHA) 10.1.2, 10.1.3 and 11.2.1 (limitation of yield increasing inputs, renouncement of fungicides and growth regulators in cereals, organic farming):

- **Expert judgements** on abated N amounts
- Assumptions for abated N amounts verified with the results from a national study using the model LandscapeDNDC (version 1.9.3) to calculate N₂O emissions of different measures
- N₂O emission calculations based on the **2006 IPCC Guidelines**

For Measures (VHA) 10.1.9 (spreading of slurry close to the ground reduced indirect N_2O emissions were calculated:

 On the basis of the 2006 IPCC Guidelines and NH₃ abatement potentials provided in UNECE (2015) in accordance with the national inventory

1) Data sources

A) Activity data: IACS database:

areas of RDP measures (10.1.2 etc...) in ha

amount of slurry in m³ applied by trailing hose spreaders and injection

B) Emission factors: Austria's GHG Inventory (Umweltbundesamt, submission 2019).

Framework Code for Good Agricultural Practice for Reducing Ammonia Emissions (UNECE 2015).

PÖLLINGER, A. et al. (2011): Evaluierung der ÖPUL-Maßnahme Verlustarme Ausbringung von flüssigen Wirtsdüngern und Biogasgülle. Projekt Nr./Wissenschaftliche Tätigkeit Nr. Antrag 100585.

FOLDAL et al. (2019): Forschungsauftrag Evaluierung verschiedener ÖPUL Maßnahmen in Hinblick auf die Reduktion von Treibhausgasemissionen, insbesondere Lachgas. Endbericht, 15.10.2019.

2) Assumptions: Reductions of N fertilizer input compared with the representative management without RDP measures

<u>Limitation of yield increasing inputs esp. by cattle and diary farmers</u> (Objective: Preservation of grassland, increase the percentage of clover, Lucerne and mixture of grass & clover on arable land):

Grassland minus 10 kg/ha; Arable land minus 30 kg/ha

<u>Renouncement of fungicides and growth regulators in cereals</u> (Objective: Reduction of pesticides, esp. resistant cultivars and extensive cultivation (lower density - ears per m² - is required):

Arable land grown with cereals minus 15 kg/ha

Organic farming (Area percentage: Arable land 20%, Grassland 32%, Wine growing area 16%, Fruit growing area 35%)

Arable land minus 65 kg/ha; Grassland minus 25 kg/ha; Vineyards minus 30 kg/ha; Fruit growing (esp. apple) minus 30 kg/ha

3) Emission Calculation (measures 10.1.2, 10.1.3, 11.2.1) acc. to IPCC 2006 methodology

Limitation of yield increasing inputs, renouncement of fungicides and growth regulators in cereals, organic farming

- AD: Areas (ha) under specific measures multiplied with specific nitrogen reduction potentials (kg N abated per ha). Result are total annual amounts of N not applied on agricultural land ("annually abated N amounts, N_{abated}").
- 2) Calculation of abated **direct N₂O-N emissions** (2006 IPCC Guidelines):

Multiplication with the IPCC default EF of 0.01 kg N_2O -N per kg N_{abated} in investigated year

3) Calculation of abated **indirect N₂O-N emissions from leaching and run-off** (2006 IPCC Guidelines):

 N_{abated} multiplied with the country specific fraction of leaching and run-off (0,15) based on (Eder et al. 2015) and multiplied with the IPCC default EF of 0.0075 kg N₂O -N per kg N leaching & run-off

4) Calculation of abated indirect N₂O-N emissions from N volatilization and re-deposition:

N_{abated} multiplied with the country specific fraction of volatilization from synthetic fertilizers (from national inventory)

and multiplied with the IPCC default EF of 0.01 kg N_2O -N per kg NH_3 -N +NO_x-N volatilized

N₂O-N is converted to N₂O by multiplication with the factor *(44/28)

Limitation of yield increasing inputs, organic farming, renouncement of fungicides and growth regulators in cereals (use on arable land, grassland, wine, fruits)

Results:

	2015	2016	2017	2018
Area [ha]	745 333	763 614	809 061	817 998
Saved mineral N amounts	21 638	22 655	24 564	25 355
Abated emissions [t N ₂ O]	399	417	453	467
Abated emissions [t CO ₂ eq]	118 808	124 392	134 872	139 215
N ₂ O Agriculture* [t CO ₂ eq]	2 476 303	2 559 545	2 487 532	2 440 575
Total GHG Agriculture** [t CO ₂ eq]	7 246 136	7 360 923	7 313 779	7 224 351

* Austria's N₂O emissions from IPCC Sector 3, Agriculture, UNFCCC submission 2020 (in CO₂ equivalent)

** Austria's emissions of N₂O, CH₄, CO₂ from IPCC Sector 3, Agriculture, UNFCCC submission 2020 (in CO₂ equivalent)

3) Emission Calculation (measure 10.1.9) acc. to IPPC 2006 methodology

Surface-near spreading of liquid farm manure

- 1) AD: Supported amounts of slurry (m³ per year) applied by trailing hose spreaders and shallow injection
- 2) Calculation **baseline emissions** assuming **broadcast spreading** techniques would be applied (1kg NH₃-N/m³ following Pöllinger & Amon 2011)
- 3) Calculation of abated NH₃-N emissions due to trailing hose spreaders (30% following UNECE 2015)

EF: 0.7 kg NH₃-N per m³ of liquid manure when spreading with a drag hose close to the ground

4) Calculation of abated NH₃-N emissions due to **shallow injection** (80% following UNECE 2015)

EF: 0.2 kg NH_3 -N per m³ of liquid manure if an injector is used

5) Calculation of **abated indirect N₂O-N emissions** due to reduced N volatilization and re-deposition Abated kg NH_3 -N volatilized multiplied with the IPCC default EF of 0.01 kg N_2O -N per kg NH_3 -N volatilized

N₂O-N is converted to N₂O by multiplication with the factor *(44/28)

Surface-near application of liquid farm manure

Results:

Slurry [m ³]	2015	2016	2017	2018
Trailing hose spreaders	1 904 884	2 715 305	2 936 440	2 979 067
Injector	112 707	156 542	203 040	192 869
Abated emissions	2015	2016	2017	2018
NH ₃ [t]	803	1 141	1 267	1 273
Indirect N ₂ O [t]	10	15	16	16
Indirect N ₂ O [t CO ₂ eq]	3 098	4 401	4 886	4 908

Challenges and solutions for the calculation of CRI 18

Challenge

- Estimation of N input due to different RDP measures
- Estimation of the amount of organic fertilisers bought in addition in organic farming

Solution

- Use of statistic data (fertiliser sale) and expert judgement of regional plant cultivation experts and synopsis with official field experiment data (e.g. for administration of new cultivars)
- Cooperation with organic control body to get anonymous management data in organic farming

Reduced NH₃ emissions

For Measures (VHA) 10.1.9, 14.1.1, 14.1.2 and 4.1.1 (Surface-near spreading of liquid farm manure, Animal welfare – grazing of livestock, Animal welfare – stable, Solid covering of slurry tanks):

- Activity data was taken or derived from IACS database
- Abatement efficiency is considered as the difference to emission estimates when using baseline assumptions (calculations without consideration of specific abatement measures)

1) Data sources

A) Activity data: IACS database

livestock units (cattle etc.)

amount of slurry in m³ applied by trailing hose spreaders and injection

B) Emission factors: Austria's Air Emission Inventory (Umweltbundesamt, submission 2019).

EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016. EEA Technical Report No. 21/2016.

Guidance document on preventing and abating ammonia emissions from agricultural sources (UNECE 2014).

Framework Code for Good Agricultural Practice for Reducing Ammonia Emissions (UNECE 2015).

PÖLLINGER, A. et al. (2011): Evaluierung der ÖPUL-Maßnahme Verlustarme Ausbringung von flüssigen Wirtsdüngern und Biogasgülle. Projekt Nr./Wissenschaftliche Tätigkeit Nr. Antrag 100585.

2) Assumptions and Emission Calculation (measure 10.1.9)

Surface-near application of liquid farm manure

- 1) AD: Promoted amounts of slurry (m³ per year) applied by trailing hose spreaders and shallow injection
- 2) Assumption: broadcast spreading techniques would be applied (1kg NH₃-N/m³ following Pöllinger & Amon 2011)
- 3) Calculation of abated NH₃-N emissions due to trailing hose spreaders (30% following UNECE 2015) EF: 0.7 kg NH₃-N per m³ of liquid manure when spreading with a drag hose close to the ground
- 4) Calculation of abated NH_3 -N emissions due to **shallow injection** (80% following UNECE 2015) EF: 0.2 kg NH_3 -N per m³ of liquid manure if an injector is used
- 5) Calculation of total abated NH₃-N emissions due to the use of surface-near application techniques The difference to the baseline emissions (broadcast spreading assumed) are abated kg NH₃-N amounts
 NH₃-N is converted to NH₃ by multiplication with the factor *(17/14)
 Effect: 1 273 t NH₃ was abated in 2018 (Austria's sector agriculture 2018: 60 358 t NH₃)

3) Emission Calculation (measure 14.1.1)

Animal welfare – grazing of livestock (cattle, sheep, goats)

- 1) Activity data are the supported livestock units (LU) for cattle, sheep and goats
- 2) Abatement efficiency is considered as the relative total NH₃ emissions from grazing systems versus housed systems (UNECE 2014)

Baseline LU emission rates for housing, yard, storage, spreading: national NH₃ emissions divided through LU units (cattle, sheep, goats)

For supported grazed livestock: baseline LU emission rates were reduced by 10%

3) Calculation of abated NH₃ emissions from the supported LU of cattle, sheep and goats

Multiplication of supported LU with (1) the baseline LU emission rates and (2) the reduced emission rates due to the effect of grazing

Abated NH₃ amounts are the difference of both

Effect: 1 638 t NH₃ was abated in 2017

3) Emission Calculation (measure 14.1.2)

Animal welfare – stable

Subsidies for the housing in littered, soft and dry areas with a continuous solid surface for lying down

- 1) Activity data are the supported animal numbers in the relevant cattle and swine categories
- 2) Abatement efficiency is considered as the relative total NH₃ emissions from liquid systems versus solid systems
- 3) Calculations were carried out on the basis of the Tier 1 methodology following the EMEP/EEA Guidebook 2016 for manure management

Assumption in the baseline: animals are held on liquid systems (NH₃ EF for liquid systems used)

Assumption for animal welfare: animals are held on solid systems (NH₃ EF for solid systems used)

Abated NH₃ amounts are the difference of both

Effect: 204 t NH₃ was abated in 2017

3) Emission Calculation (measure 4.1.1)

Solid covering of slurry tanks

- 1) Activity data: capacity of covered storages elaborated on the basis of funding data (m³ and LU)
- 2) Evaluation of IACS database indicated that 75% of LU are cattle and 25% of LU are swine
- 3) Calculations were carried out on the basis of the Tier 1 methodology following the EMEP/EEA Guidebook 2016 for "Manure management"
- 4) As the manure management includes emissions from housing, storage and yards the **share of the storage within the manure management** was derived from the Austrian national NH₃ emission (25% for cattle and 14% for swine)
- 5) Abatement efficiency is considered as the relative total NH₃ emissions from liquid tanks without solid cover versus liquid tanks with solid cover

Assumption in the baseline: the liquid manure is stored in open tanks

Assumption for measure 4.1.1: the liquid manure is stored in tanks with solid cover (abatement potential: -80% following UNECE 2015)

Abated NH₃ amounts are the difference of both

Effect: 184 t NH₃ was abated in 2017

Challenges and solutions for the calculation of CRI 19

▲ Challenge

- No detailed data on the level of farms are available
- Specific measures for animal welfare do not focus on the abatement of NH₃ emissions. Thus, simplified assumptions are needed

${igoplus}$ Solution

- Gathering of representative data samples on the level of farms
- Information needed for emission calculation (e.g. liquid system, solid system, abatement technologies) should be recorded in the data base (in conjunction with supported activity data, e.g. animal livestock)

Main conclusions and lessons learned

Calculation of GHG and ammonia must be in accordance with the official national emission inventories, the national authorities should be involved	Improvement of the RDP measure for reduction commitments for ammonia emissions are necessary, esp. the max. application rate should meet the nutrient demand for a better acceptability to the farmers (max. 30 m3 slurry per ha)
Assumptions of N input have to be checked with official statistic data (fertiliser purchase)	Further improvements have to be done on the assumed N input reductions, N fertiliser inputs are also influenced by different weather conditions (drought periods)
Higher tier methods are only applicable if sufficient detailed data and information is available	The agronomical benefits such as increased crop yield and reduced need for nitrogen fertilisers should be stressed, when farmers are investing in low-emission spreading equipment

Recommendations / suggested improvements for future CAP

- Acc. to the EU-Nitrate Regulation a lot of management records have to be done by the farmers, but these data are not available in anonymous and digital form for evaluation purposes
- Also for FADN-data (freiwillige Buchführungsbetriebe) economic data of different farm types and regions are recorded: This recording should be extended for detailed data (e.g. purchase of N and P, pesticides, etc.)

• The postulated requirements concerning data for evaluation of the helpdesk might be performed to some extent by using and improving the existing data sources. A multi-stakeholder approach, esp. due to data protection issues, is necessary

Thank you

Michael Anderl, Umweltbundesamt (Austria)

michael.anderl@umweltbundesamt.at

Georg Dersch, AGES (Austria) georg.dersch@ages.at

